Line Algorithms¶
-
treelas.
line_las
(y, lam, mu=1.0, x=None, increasing=True)¶
-
treelas.
line_dp
(*args, **kwargs)¶ Overloaded function.
line_dp(y: numpy.ndarray[float64], lam: float, mu: float = 1.0, x: numpy.ndarray[float64] = None) -> numpy.ndarray[float64]
line_dp(y: numpy.ndarray[float64], lam: numpy.ndarray[float64], mu: float = 1.0, x: numpy.ndarray[float64] = None) -> numpy.ndarray[float64]
line_dp(y: numpy.ndarray[float64], lam: float, mu: numpy.ndarray[float64] = 1.0, x: numpy.ndarray[float64] = None) -> numpy.ndarray[float64]
line_dp(y: numpy.ndarray[float64], lam: numpy.ndarray[float64], mu: numpy.ndarray[float64] = 1.0, x: numpy.ndarray[float64] = None) -> numpy.ndarray[float64]
Line solver (weights).
Memory: ??*len(y)*sizeof(uint32_t)
For Comparison¶
-
treelas.
line_glmgen
(y: numpy.ndarray[float64], lam: float, out: numpy.ndarray[float64] = None, verbose: bool = False) → numpy.ndarray[float64]¶ ` Line solver (implementation of the R package glmgen).
Memory: ??*len(y)*sizeof(uint32_t)
-
treelas.
line_condat
(y: numpy.ndarray[float64], lam: float, out: numpy.ndarray[float64] = None) → numpy.ndarray[float64]¶ Line solver, implemented by Laurent Condat, version 2.0, Aug. 30, 2017. See: https://www.gipsa-lab.grenoble-inp.fr/~laurent.condat
Memory usage: 2*len(y)*sizeof(uint32_t)